Sabtu, 21 Juli 2012

Proses Pembentukan Minyak Bumi & Gas Alam

A.     Proses Pembentukan Minyak Bumi dan Gas Alam
Para ahli berpendapat bahwa minyak bumi terbentuk dari pelapukan sisa kehidupan purba (hewan, tumbuhan, dan jasad-jasad renik) yang terpendam bersama air laut dan masuk ke dalam batuan pasir, lempung, atau gamping yang terdapat di dalam lapisan kerak bumi selama berjuta-juta tahun melalui proses fisika dan kimia. Proses terbentuknya minyak bumi dapat dijelaskan sebagai berikut:
a.       Pada zaman purba, di darat dan di dalam lautan hidup beraneka ragam binatang dan tumbuh-tumbuhan. Binatang serta tumbuh-tumbuhan yang mati ataupun punah itu akhirnya tertimbun di bawah endapan lumpur. Endapan lumpur ini kemudian dihanyutkan oleh arus sungai menuju lautan bersama bahan organik lainnya dari daratan.
b.      Selama berjuta-juta tahun, sungai-sungai menghanyutkan pasir dan lumpur ke dasar laut dan membuat lapisan batuan yang bercampur dengan fosil-fosil binatang dan tumbuh-tumbuhan.
c.       Akibat peristiwa alam, lapisan dan permukaan bumi mengalami perubahan besar berupa pergeseran-pergeseran sehingga fosil hewan dan tumbuhan yang terkubur di perut bumi masuk ke celah-celah lapisan bumi yang bersuhu dan bertekanan tinggi. Akibat pengaruh waktu, temperatur tinggi, dan tekanan beban lapisan batuan di atasnya, menyebabkan binatang dan tumbuh-tumbuhan yang mati tadi mengalami proses penguraian berupa perubahan kimia, berubah menjadi bintik-bintik dan gelembung minyak yang berbentuk cairan kental dan gas. Akibat pengaruh yang sama, maka endapan lumpur berubah menjadi batuan sedimen. Batuan lunak yang berasal dari lumpur yang mengandung bintik-bintik minyak dikenal sebagai batuan induk atau “source rock”.
d.      Karena ringan, minyak bumi akan terdorong dan terapung, lalu bergerak mencari tempat yang lebih baik (berimigrasi menuju tempat yang bertekanan lebih rendah) untuk berhenti dan terperangkap dalam batuan sedimen yang kedap atau kadang-kadang merembes ke luar permukaan bumi. Batuan sedimen tersusun atas fragmen-fragmen atau butiran mineral dari yang halus sampai yang kasar satu sama lain saling terikat oleh materi yang sangat halus dan berfungsi sebagai “semen”, sehingga di antaranya terdapat pori-pori. Pada kondisi tertentu, pori-pori ini dapat mengandung fluida minyak, gas, atau air. Peristiwa terperangkapnya minyak bumi dan gas alam dalam batuan sedimen disebut proses “akumulasi”.
Berapa lama proses terbentuknya minyak bumi? Mengenai hal ini masih terdapat pendapat yang berbeda-beda. Ada yang mengatakan ribuan tahun, ada yang mengatakan jutaan tahun, bahkan ada yang berpendapat lebih dari itu. Namun diduga, minyak bumi terbentuk paling sedikit 2 juta tahun yang lalu, dan ada juga yang berpendapat bahwa minyak bumi terbentuk 500-2500 juta tahun yang lalu.

Membahas identifikasi minyak bumi tidak dapat lepas dari bahasan teori pembentukan minyak bumi dan kondisi pembentukannya yang membuat suatu minyak bumi menjadi spesifik dan tidak sama antara suatu minyak bumi dengan minyak bumi lainnya. Ada banyak hipotesa tentang terbentuknya minyak bumi yang dikemukakan oleh para ahli, beberapa diantaranya adalah:
1.     Teori Biogenesis (organik)
Macqiur (Perancis, 1758) merupakan orang yang pertama kali mengemukakan pendapat bahwa minyak bumi berasal dari tumbuh-tumbuhan. Kemudian M.W. Lamanosow (Rusia, 1763) juga mengemukakan hal yang sama. Pendapat di atas juga didukung oleh sarjana lainnya seperti, New Beery (1859), Engler (1909), Bruk (1936), Bearl (1938) dan Hofer. Mereka menyatakan bahwa: Minyak dan gas bumi berasal dari organisme laut yang telah mati berjuta-juta tahun yang lalu dan membentuk sebuah lapisan dalam perut bumi.
2.      Teori Abiogenesis (Anorganik)
Barthelot (1866) mengemukakan bahwa di dalam minyak bumi terdapat logam alkali, yang dalam keadaan bebas dengan temperatur tinggi akan bersentuhan dengan CO2 membentuk -asitilena. Kemudian Mandeleyev (1877) mengemukakan bahwa minyak bumi terbentuk akibat adanya pengaruh kerja uap pada karbida-karbida logam dalam bumi. Yang lebih ekstrim lagi adalah pernyataan beberapa ahli yang mengemukakan bahwa minyak bumi mulai terbentuk sejak zaman prasejarah, jauh sebelum bumi terbentuk dan bersamaan dengan proses terbentuknya bumi. Pernyataan tersebut berdasarkan fakta ditemukannya material hidrokarbon dalam beberapa batuan meteor dan di atmosfir beberapa planet lain.

Dari sekian banyak hipotesa tersebut yang sering dikemukakan adalah Teori Biogenesis, karena lebih bisa. Teori pembentukan minyak bumi terus berkembang seiring dengan berkembangnya teknologi dan teknik analisis minyak bumi, sampai kemudian pada tahun 1984 G. D. Hobson dalam tulisannya yang berjudul The Occurrence and Origin of Oil and Gas menyatakan bahwa : The type of oil is dependent on the position in the deposition a basin, and that the oils become lighter in going basin ward in any horizon. It certainly seems likely that the depositional environment would determine the type of oil formed and could exert an influence on the character of the oil for a long time, even thought there is evolution.
Berdasarkan teori Biogenesis, minyak bumi terbentuk karena adanya kebocoran kecil yang permanen dalam siklus karbon. Siklus karbon ini terjadi antara atmosfir dengan permukaan bumi, yang digambarkan dengan dua panah dengan arah yang berlawanan, dimana karbon diangkut dalam bentuk karbon dioksida (CO2). Pada arah pertama, karbondioksida di atmosfir berasimilasi, artinya CO2 diekstrak dari atmosfir oleh organisme fotosintetik darat dan laut. Pada arah yang kedua CO2 dibebaskan kembali ke atmosfir melalui respirasi makhluk hidup (tumbuhan, hewan dan mikroorganisme).
Dalam proses ini, terjadi kebocoran kecil yang memungkinkan satu bagian kecil karbon yang tidak dibebaskan kembali ke atmosfir dalam bentuk CO2, tetapi mengalami transformasi yang akhir-nya menjadi fosil yang dapat terbakar. Bahan bakar fosil ini jumlahnya hanya kecil sekali. Bahan organik yang mengalami oksidasi selama pemendaman. Akibatnya, bagian utama dari karbon organik dalam bentuk karbonat menjadi sangat kecil jumlahnya dalam batuan sedimen.
Pada mulanya senyawa tersebut (seperti karbohidrat, protein dan lemak) diproduksi oleh makhluk hidup sesuai dengan kebutuhannya, seperti untuk mempertahankan diri, untuk berkembang biak atau sebagai komponen fisik dan makhluk hidup itu. Komponen yang dimaksud dapat berupa konstituen sel, membran, pigmen, lemak, gula atau protein dari tumbuh-tumbuhan, cendawan, jamur, protozoa, bakteri, invertebrata ataupun binatang berdarah dingin dan panas, sehingga dapat ditemukan di udara, pada permukaan, dalam air atau dalam tanah.
Apabila makhluk hidup tersebut mati, maka 99,9 % senyawa karbon dan makhluk hidup akan kembali mengalami siklus sebagal rantai makanan, sedangkan sisanya 0,1 % senyawa karbon terjebak dalam tanah dan dalam sedimen. Inilah yang merupakan cikal bakal senyawa-senyawa fosil atau dikenal juga sebagai embrio minyak bumi. Embrio ini mengalami perpindahan dan akan menumpuk di salah satu tempat yang kemungkinan menjadi reservoar dan ada yang hanyut bersama aliran air sehingga menumpuk di bawah dasar laut, dan ada juga karena perbedaan tekanan di bawah laut muncul ke permukaan lalu menumpuk di permukaan dan ada pula yang terendapkan di permukaan laut dalam yang arusnya kecil.
Embrio kecil ini menumpuk dalam kondisi lingkungan lembab, gelap dan berbau tidak sedap di antara mineral-mineral dan sedimen, lalu membentuk molekul besar yang dikenal dengan geopolimer. Senyawa-senyawa organik yang terpendam ini akan tetap dengan karakter masing-masing yang spesifik sesuai dengan bahan dan lingkungan pembentukannya. Selanjutnya senyawa organik ini akan mengalami proses geologi dalam perut bumi. Pertama akan mengalami proses diagenesis, dimana senyawa organik dan makhluk hidup sudah merupakan senyawa mati dan terkubur sampai 600 meter saja di bawah permukaan dan lingkungan bersuhu di bawah 50°C.
Pada kondisi ini senyawa-senyawa organik yang berasal dan makhluk hidup mulai kehilangan gugus beroksigen akibat reaksi dekarboksilasi dan dehidratasi. Semakin dalam pemendaman terjadi, semakin panas lingkungannya, penam-bahan kedalaman 30 - 40 m akan menaik-kan temperatur 1°C. Di kedalaman lebih dan 600 m sampai 3000 m, suhu pemendaman akan berkisar antara 50 - 150 °C, proses geologi kedua yang disebut katagenesis akan berlangsung, maka geopolimer yang terpendam mulal terurai akibat panas bumi.
Komponen-komponen minyak bumi pada proses ini mulai terbentuk dan senyawa-senyawa karakteristik yang berasal dan makhluk hidup tertentu kembali dibebaskan dari molekul. Bila kedalaman terus berlanjut ke arah pusat bumi, temperatur semakin naik, dan jika kedalaman melebihi 3000 m dan suhu di atas 150°C, maka bahan-bahan organik dapat terurai menjadi gas bermolekul kecil, dan proses ini disebut metagenesis.
Setelah proses geologi ini dilewati, minyak bumi sudah terbentuk bersama-sama dengan bio-marka. Fosil molekul yang sudah terbentuk ini akan mengalami perpindahan (migrasi) karena kondisi lingkungan atau kerak bumi yang selalu bergerak rata-rata se-jauh 5cm per tahun, sehingga akan ter-perangkap pada suatu batuan berpori, atau selanjutnya akan bermigrasi membentuk suatu sumur minyak.
Apabila dicuplik batuan yang memenjara minyak ini (batuan induk) atau minyak yang terperangkap dalam rongga bu-mi, akan ditemukan fosil senyawa-senyawa organik. Fosil-fosil senyawa inilah yang ditentukan strukturnya menggunaan beberapa metoda analisis, sehingga dapat menerangkan asal-usul fosil, bahan pembentuk, migrasi minyak bumi serta hubungan antara suatu minyak bumi dengan minyak bumi lain dan hubungan minyak bumi dengan batuan induk.

B.     Bagan Penyulingan Bertingkat dan teknik pemisahan Fraksi-fraksi Minyak Bumi
Minyak bumi merupakan campuran senyawa-senyawa hidrokarbon. Untuk dapat dimanfaatkan perlu dipisahkan melalui distilasi bertingkat, yaitu cara pemisahan fraksi-fraksi minyak bumi berdasarkan perbedaan titik didihnya pada kolom bertingkat. Komponen utama minyak bumi dan gas alam adalah alkana.
Gas alam mengandung 80% metana, 7% etana, 6% propana, 4% butana dan isobutana, sisanya pentana. Untuk dapat dimanfaatkan gas propana dan butana dicairkan yang dikenal sebagai LNG (Liquid Natural Gas). Karena pembakaran gas alam murni lebih efisien dan sedikit polutan, maka gas alam banyak digunakan untuk bahan bakar industri dan rumah tangga. Dalam tabung kecil sering digunakan untuk kemah, barbekyu, dan pemantik api. LNG juga banyak digunakan untuk bahan dasar industri kimia seperti pembuatan metanol dan pupuk.
Senyawa penyusun minyak bumi: alkana, sikloalkana, dan senyawa aromatik. Di samping itu terdapat pengotor berupa senyawa organik yang mengandung S, N, O, dan organo logam. Dari hasil distilasi bertingkat diperoleh fraksi-fraksi LNG, LPG, petroleum eter, bensin, kerosin, solar, oli, lilin, dan aspal.

C.      Kualitas atau Mutu Bensin berdasarkan Bilangan Oktan
Bensin akhir-akhir ini menjadi perhatian utama karena pemakaiannya untuk bahan bakar kendaraan bermotor sering menimbulkan masalah. Kualitas bensin ditentukan oleh bilangan oktan, yaitu  bilangan yang menunjukkan jumlah isooktan dalam bensin.
Bilangan oktan merupakan ukuran kemampuan bahan bakar mengatasi ketukan ketika terbakar dalam mesin. Bensin merupakan fraksi minyak bumi yang mengandung senyawa n–heptana dan isooktan. Misalnya, bensin premium yang beredar di pasaran dengan bilangan oktan 80 berarti bensin tersebut mengandung 80% isooktan dan 20% n–heptana. Bensin super mempunyai bilangan oktan 98 berarti mengandung 98% isooktan dan 2%  n–heptana. Pertamina meluncurkan produk bensin ke pasaran dengan 3 nama, yaitu:
1.      Premium (bilangan oktan 80–88),
2.      Pertamax (bilangan oktan 91–92), dan
3.      Pertamax Plus (bilangan oktan 95).
Penambahan zat anti-ketukan pada bensin bertujuan untuk memperlambat pembakaran bahan bakar. Untuk menaikkan bilangan oktan antara lain ditambahkan MTBE (Metyl Tertier Butil Eter), tersier butil alkohol, benzena, atau etanol.
Tabel Kualitas Bensin Berdasarkan Bilangan Oktan

Senyawa
Bilangan Oktan
(RON)
Kandungan
n-heptane
(%volum)
Isooktane
(%volum)
Bensin premium
Bensin super
Bensin premix
(premix mixture)
82
98
94
18
2
13
82
98
87 + 20% MTBE
heptana
0
100
0
2-metilheptana
heksana
2-metilheksana
1-heptana
pentana
1-pentena
butana
sikloheksana
23
25
44
60
62
84
91
97
77
75
56
40
38
16
9
3
23
25
44
60
62
84
91
97
Isooktana
100
0
100
benzene
toluene
MTBE
101
112
116
-
-
-
101
112
116

D.     Dampak Pembakaran Bahan Bakar terhadap Lingkungan
1.      Karbon Monoksida (CO)
Gas karbon monoksida adalah gas yang tidak berwarna, tidak berbau, tidak berasa, dan tidak merangsang. Hal ini menyebabkan keberadaannya sulit dideteksi. Padahal gas ini sangat berbahaya bagi kesehatan karena pada kadar rendah dapat menimbulkan sesak napas dan pucat. Pada kadar yang lebih tinggi dapat menyebabkan pingsan dan pada kadar lebih dari 1.000 ppm dapat menimbulkan kematian. Gas CO ini berbahaya karena dapat membentuk senyawa dengan hemoglobin membentuk HbCO, dan ini merupakan racun bagi darah. Oleh karena yang diedarkan ke seluruh tubuh termasuk ke otak bukannya HbO, tetapi justru HbCO.
Keberadaan HbCO ini disebabkan karena persenyawaan HbCO memang lebih kuat ikatannya dibandingkan dengan HbO. Hal ini disebabkan karena afinitas HbCO lebih kuat 250 kali dibandingkan dengan HbO. Akibatnya Hb sulit melepas CO, sehingga tubuh bahkan otak akan mengalami kekurangan oksigen. Kekurangan oksigen dalam darah inilah yang akan menyebabkan terjadinya sesak napas, pingsan, atau bahkan kematian. Sumber keberadaan gas CO ini adalah pembakaran yang tidak sempurna dari bahan bakar minyak bumi. Salah satunya adalah pembakaran bensin, di mana pada pembakaran yang terjadi di mesin motor, dapat menghasilkan pembakaran tidak sempurna dengan reaksi sebagai berikut.

Sumber lain yang menyebabkan terjadinya gas CO, selain pembakaran tidak sempurna bensin adalah pembakaran tidak sempurna yang terjadi pada proses industri, pembakaran sampah, pembakaran hutan, kapal terbang, dan lain-lain. Namun demikian, penyebab utama banyaknya gas CO di udara adalah pembakaran tidak sempurna dari bensin, yang mencapai 59%. Sekarang ini para ahli mencoba mengembangkan alat yang berfungsi untuk mengurangi banyaknya gas CO, dengan merancang alat yang disebut catalytic converter, yang berfungsi mengubah gas pencemar udara seperti CO dan NO menjadi gas-gas yang tidak berbahaya, dengan reaksi:

2.      Karbon Dioksida (CO2)
Sebagaimana gas CO, maka gas karbon dioksida juga mempunyai sifat tidak berwarna, tidak berasa, dan tidak merangsang. Gas CO2  merupakan hasil pembakaran sempurna bahan bakar minyak bumi maupun batu bara. Dengan semakin banyaknya jumlah kendaraan bermotor dan semakin banyaknya jumlah pabrik, berarti meningkat pula jumlah atau kadar CO2  di udara kita.
Keberadaan CO2 yang berlebihan di udara memang tidak berakibat langsung pada manusia, sebagaimana gas CO. Akan tetapi berlebihnya kandungan CO2  menyebabkan sinar inframerah dari matahari diserap oleh bumi dan benda-benda di sekitarnya. Kelebihan sinar inframerah ini tidak dapat kembali ke atmosfer karena terhalang oleh lapisan CO2  yang ada di atmosfer. Akibatnya suhu di bumi menjadi semakin panas. Hal ini menyebabkan suhu di bumi, baik siang maupun malam hari tidak menunjukkan perbedaan yang berarti atau bahkan dapat dikatakan sama. Akibat yang ditimbulkan oleh berlebihnya kadar CO2  di udara ini dikenal sebagai efek rumah kaca atau green house effect.
Untuk mengurangi jumlah CO2  di udara maka perlu dilakukan upaya-upaya, yaitu dengan penghijauan, menanam pohon, memperbanyak taman kota, serta  pengelolaan hutan dengan baik.


3.      Oksida Belerang (SO2 dan SO3)
Gas belerang dioksida (SO2 ) mempunyai sifat tidak berwarna, tetapi berbau sangat menyengat dan dapat menyesakkan napas meskipun dalam kadar rendah. Gas ini dihasilkan dari oksidasi atau pembakaran belerang yang terlarut dalam bahan bakar miyak bumi serta dari pembakaran belerang yang terkandung dalam bijih logam yang diproses pada industri pertambangan. Penyebab terbesar berlebihnya kadar oksida belerang di udara adalah pada pembakaran batu bara. Akibat yang ditimbulkan oleh berlebihnya oksida belerang memang tidak secara langsung dirasakan oleh manusia, akan tetapi menyebabkan terjadinya hujan asam.  Proses terjadinya hujan asam dapat dijelaskan dengan reaksi berikut.
a.       Pembentukan asam sulfit di udara lembab =
b.      Gas SO2 dapat bereaksi dengan oksigen di udara
c.       Gas SO3 mudah larut dalam air, di udara lembap membentuk asam sulfat yang lebih berbahaya daripada SO2  dan H2SO3
Hujan yang banyak mengandung asam sulfat ini memiliki  pH < 5, sehingga menyebabkan sangat korosif terhadap logam dan berbahaya bagi kesehatan. Di samping menyebabkan hujan asam, oksida belerang baik SO2 maupun SO3  yang terserap ke dalam alat pernapasan masuk ke paru-paru juga akan membentuk asam sulfit dan asam sulfat yang sangat berbahaya bagi kesehatan pernapasan, khususnya paru-paru.
4.      Oksida Nitrogen (NO dan NO)
Gas  nitrogen monoksida memiliki sifat tidak berwarna, yang pada konsentrasi tinggi juga dapat menimbulkan keracunan. Di samping itu, gas oksida nitrogen juga dapat menjadi penyebab hujan asam. Keberadaan gas nitrogen monoksida di udara disebabkan karena gas nitrogen ikut terbakar bersama dengan oksigen, yang terjadi pada suhu tinggi. Reaksinya adalah:

Pada saat kontak dengan udara, maka gas NO akan membentuk gas NO2  dengan reaksi sebagai berikut.
Gas NO2  merupakan gas beracun, berwarna merah cokelat, dan berbau seperti asam nitrat yang sangat menyengat dan merangsang. Keberadaan gas NO2  lebih dari 1 ppm dapat menyebabkan terbentuknya zat yang bersifat karsinogen atau penyebab terjadinya kanker. Jika menghirup gas NO2 dalam kadar 20 ppm akan dapat menyebabkan kematian. Sebagai pencegahan maka di pabrik atau motor, bagian pembuangan asap ditambahkan katalis logam nikel yang berfungsi sebagai konverter. Prinsip kerjanya adalah mengubah gas buang yang mencemari menjadi gas yang tidak berbahaya bagi lingkungan maupun kesehatan manusia. 

Tidak ada komentar:

Posting Komentar